Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We study fair division of indivisible chores among n agents with additive cost functions using the popular fairness notion of maximin share (MMS). Since MMS allocations do not always exist for more than two agents, the goal has been to improve its approximations and identify interesting special cases where MMS allocations exist. We show the existence of· 1-out-of-9n/11 MMS allocations, which improves the state-of-the-art factor of 1-out-of-3n/4.· MMS allocations for factored instances, which resolves an open question posed by Ebadian et al. (2021).· 15/13-MMS allocations for personalized bivalued instances, improving the state-of-the-art factor of 13/11.We achieve these results by leveraging the HFFD algorithm of Huang and Lu (2021). Our approach also provides polynomial-time algorithms for computing an MMS allocation for factored instances and a 15/13-MMS allocation for personalized bivalued instances.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Abstract We examined three observations of green emission events (labeled as event A, B and C, respectively) associated with red sprites as captured by amateurs. In all cases, the green emissions were recorded atop of red sprite. Based on the location of causative strokes and background star fields for events A and B, their altitudes are confined between 88 and 100 km, with the maximum brightness at 90.7 and 95.5 km, respectively. Events B and C were lit up for a second time after the recurrence of a sprite element, extending their duration to approximately 1,084 ms and 732.6 ms, much longer than that (about 500 ms) for event A; the intensity of green emissions was also enhanced due to sprite recurrence. It is inferred that the recurrence of sprite elements could affect the ambient condition by further increasing electron density and strengthening the electric field for the ghost production.more » « less
- 
            This study outlines the preparation and characterization of a unique superlattice composed of indium oxide (In2O3) vertex-truncated nano-octahedra, along with an exploration of its response to high-pressure conditions. Transmission electron microscopy and scanning transmission electron microscopy were employed to determine the average circumradius (15.2 nm) of these vertex-truncated building blocks and their planar superstructure. The resilience and response of the superlattice to pressure variations, peaking at 18.01 GPa, were examined by using synchrotron-based Wide-Angle X-ray Scattering (WAXS) and Small-Angle X-ray Scattering (SAXS) techniques. The WAXS data revealed no phase transitions, reinforcing the stability of the 2D superlattice comprised of random layers in alignment with a p31m planar symmetry as discerned by SAXS. Notably, the SAXS data also unveiled a pressure-induced, irreversible translation of octahedra and ligand interaction occurring within the random layer. Through our examination of these pressure-sensitive behaviors, we identified a distinctive translation model inherent to octahedra and observed modulation in the superlattice cell parameter induced by pressure. This research signifies a noteworthy advancement in deciphering the intricate behaviors of 2D superlattices under high pressure.more » « less
- 
            dadi-cli: Automated and distributed population genetic model inference from allele frequency spectraAbstract Summarydadi is a popular software package for inferring models of demographic history and natural selection from population genomic data. But using dadi requires Python scripting and manual parallelization of optimization jobs. We developed dadi-cli to simplify dadi usage and also enable straighforward distributed computing. Availability and Implementationdadi-cli is implemented in Python and released under the Apache License 2.0. The source code is available athttps://github.com/xin-huang/dadi-cli. dadi-cli can be installed via PyPI and conda, and is also available through Cacao on Jetstream2https://cacao.jetstream-cloud.org/.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available